

    
      
          
            
  
snps

tools for reading, writing, merging, and remapping SNPs


Contents


	README
	Features

	Supported Genotype Files

	Dependencies

	Installation

	Examples

	Documentation

	Acknowledgements





	Output Files
	Save SNPs





	Installation
	Installation and Usage on a Raspberry Pi





	snps Banner
	SNPs





	Changelog

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Documentation





	Contributors
	Core Developers

	Other Contributors





	Code Documentation
	SNPs

	snps.ensembl

	snps.io

	snps.resources

	snps.utils











Indices and tables


	Index


	Module Index







            

          

      

      

    

  

    
      
          
            
  [image: _images/snps_banner.png]
[image: ci] [https://github.com/apriha/snps/actions/workflows/ci.yml] [image: codecov] [https://codecov.io/gh/apriha/snps] [image: docs] [https://snps.readthedocs.io/] [image: pypi] [https://pypi.python.org/pypi/snps] [image: python] [https://www.python.org] [image: downloads] [https://pepy.tech/project/snps] [image: black] [https://github.com/psf/black]


snps

tools for reading, writing, merging, and remapping SNPs 🧬

snps strives to be an easy-to-use and accessible open-source library for working with
genotype data


Features


Input / Output


	Read raw data (genotype) files from a variety of direct-to-consumer (DTC) DNA testing
sources with a SNPs [https://snps.readthedocs.io/en/stable/snps.html#snps.snps.SNPs]
object


	Read and write VCF files (e.g., convert 23andMe [https://www.23andme.com] to VCF)


	Merge raw data files from different DNA tests, identifying discrepant SNPs in the process


	Read data in a variety of formats (e.g., files, bytes, compressed with gzip or zip)


	Handle several variations of file types, validated via
openSNP parsing analysis [https://github.com/apriha/snps/tree/master/analysis/parse-opensnp-files]






Build / Assembly Detection and Remapping


	Detect the build / assembly of SNPs (supports builds 36, 37, and 38)


	Remap SNPs between builds / assemblies






Data Cleaning


	Perform quality control (QC) / filter low quality SNPs based on chip clusters [https://doi.org/10.1016/j.csbj.2021.06.040]


	Fix several common issues when loading SNPs


	Sort SNPs based on chromosome and position


	Deduplicate RSIDs


	Deduplicate alleles in the non-PAR regions of the X and Y chromosomes for males


	Deduplicate alleles on MT


	Assign PAR SNPs to the X or Y chromosome






Analysis


	Derive sex from SNPs


	Detect deduced genotype / chip array and chip version based on chip clusters [https://doi.org/10.1016/j.csbj.2021.06.040]


	Predict ancestry from SNPs (when installed with ezancestry [https://github.com/arvkevi/ezancestry])







Supported Genotype Files

snps supports VCF [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137218/] files and
genotype files from the following DNA testing sources:


	23andMe [https://www.23andme.com]


	Ancestry [https://www.ancestry.com]


	CircleDNA [https://circledna.com/]


	Código 46 [https://codigo46.com.mx]


	DNA.Land [https://dna.land]


	Family Tree DNA [https://www.familytreedna.com]


	Genes for Good [https://genesforgood.sph.umich.edu]


	LivingDNA [https://livingdna.com]


	Mapmygenome [https://mapmygenome.in]


	MyHeritage [https://www.myheritage.com]


	Sano Genetics [https://sanogenetics.com]


	tellmeGen [https://www.tellmegen.com]




Additionally, snps can read a variety of “generic” CSV and TSV files.



Dependencies

snps requires Python [https://www.python.org] 3.7.1+ and the following Python
packages:


	numpy [http://www.numpy.org]


	pandas [http://pandas.pydata.org]


	atomicwrites [https://github.com/untitaker/python-atomicwrites]






Installation

snps is available [https://pypi.org/project/snps/] on the
Python Package Index [https://pypi.org]. Install snps (and its required
Python dependencies) via pip:

$ pip install snps





For ancestry prediction [https://snps.readthedocs.io/en/stable/snps.html#snps.snps.SNPs.predict_ancestry]
capability, snps can be installed with ezancestry [https://github.com/arvkevi/ezancestry]:

$ pip install snps[ezancestry]







Examples


Download Example Data

First, let’s setup logging to get some helpful output:

>>> import logging, sys
>>> logger = logging.getLogger()
>>> logger.setLevel(logging.INFO)
>>> logger.addHandler(logging.StreamHandler(sys.stdout))





Now we’re ready to download some example data from openSNP [https://opensnp.org]:

>>> from snps.resources import Resources
>>> r = Resources()
>>> paths = r.download_example_datasets()
Downloading resources/662.23andme.340.txt.gz
Downloading resources/662.ftdna-illumina.341.csv.gz







Load Raw Data

Load a 23andMe [https://www.23andme.com] raw data file:

>>> from snps import SNPs
>>> s = SNPs("resources/662.23andme.340.txt.gz")
>>> s.source
'23andMe'
>>> s.count
991786





The SNPs class accepts a path to a file or a bytes object. A Reader class attempts to
infer the data source and load the SNPs. The loaded SNPs are
normalized [https://snps.readthedocs.io/en/stable/snps.html#snps.snps.SNPs.snps] and
available via a pandas.DataFrame:

>>> df = s.snps
>>> df.columns.values
array(['chrom', 'pos', 'genotype'], dtype=object)
>>> df.index.name
'rsid'
>>> df.chrom.dtype.name
'object'
>>> df.pos.dtype.name
'uint32'
>>> df.genotype.dtype.name
'object'
>>> len(df)
991786





snps also attempts to detect the build / assembly of the data:

>>> s.build
37
>>> s.build_detected
True
>>> s.assembly
'GRCh37'







Merge Raw Data Files

The dataset consists of raw data files from two different DNA testing sources - let’s combine
these files. Specifically, we’ll update the SNPs object with SNPs from a
Family Tree DNA [https://www.familytreedna.com] file.

>>> merge_results = s.merge([SNPs("resources/662.ftdna-illumina.341.csv.gz")])
Merging SNPs('662.ftdna-illumina.341.csv.gz')
SNPs('662.ftdna-illumina.341.csv.gz') has Build 36; remapping to Build 37
Downloading resources/NCBI36_GRCh37.tar.gz
27 SNP positions were discrepant; keeping original positions
151 SNP genotypes were discrepant; marking those as null
>>> s.source
'23andMe, FTDNA'
>>> s.count
1006960
>>> s.build
37
>>> s.build_detected
True





If the SNPs being merged have a build that differs from the destination build, the SNPs to merge
will be remapped automatically. After this example merge, the build is still detected, since the
build was detected for all SNPs objects that were merged.

As the data gets added, it’s compared to the existing data, and SNP position and genotype
discrepancies are identified. (The discrepancy thresholds can be tuned via parameters.) These
discrepant SNPs are available for inspection after the merge via properties of the SNPs object.

>>> len(s.discrepant_merge_genotypes)
151





Additionally, any non-called / null genotypes will be updated during the merge, if the file
being merged has a called genotype for the SNP.

Moreover, merge takes a chrom parameter - this enables merging of only SNPs associated
with the specified chromosome (e.g., “Y” or “MT”).

Finally, merge returns a list of dict, where each dict has information corresponding
to the results of each merge (e.g., SNPs in common).

>>> sorted(list(merge_results[0].keys()))
['common_rsids', 'discrepant_genotype_rsids', 'discrepant_position_rsids', 'merged']
>>> merge_results[0]["merged"]
True
>>> len(merge_results[0]["common_rsids"])
692918







Remap SNPs

Now, let’s remap the merged SNPs to change the assembly / build:

>>> s.snps.loc["rs3094315"].pos
752566
>>> chromosomes_remapped, chromosomes_not_remapped = s.remap(38)
Downloading resources/GRCh37_GRCh38.tar.gz
>>> s.build
38
>>> s.assembly
'GRCh38'
>>> s.snps.loc["rs3094315"].pos
817186





SNPs can be remapped between Build 36 (NCBI36), Build 37 (GRCh37), and Build 38
(GRCh38).



Save SNPs

Ok, so far we’ve merged the SNPs from two files (ensuring the same build in the process and
identifying discrepancies along the way). Then, we remapped the SNPs to Build 38. Now, let’s save
the merged and remapped dataset consisting of 1M+ SNPs to a tab-separated values (TSV) file:

>>> saved_snps = s.to_tsv("out.txt")
Saving output/out.txt
>>> print(saved_snps)
output/out.txt





Moreover, let’s get the reference sequences for this assembly and save the SNPs as a VCF file:

>>> saved_snps = s.to_vcf("out.vcf")
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.1.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.2.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.3.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.4.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.5.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.6.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.7.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.8.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.9.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.10.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.11.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.12.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.13.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.14.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.15.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.16.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.17.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.18.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.19.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.20.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.21.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.22.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.X.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.Y.fa.gz
Downloading resources/fasta/GRCh38/Homo_sapiens.GRCh38.dna.chromosome.MT.fa.gz
Saving output/out.vcf
1 SNP positions were found to be discrepant when saving VCF





When saving a VCF, if any SNPs have positions outside of the reference sequence, they are marked
as discrepant and are available via a property of the SNPs object.

All output files [https://snps.readthedocs.io/en/stable/output_files.html] are saved to the
output directory.




Documentation

Documentation is available here [https://snps.readthedocs.io/].



Acknowledgements

Thanks to Mike Agostino, Padma Reddy, Kevin Arvai, openSNP [https://opensnp.org],
Open Humans [https://www.openhumans.org], and Sano Genetics [https://sanogenetics.com].





            

          

      

      

    

  

    
      
          
            
  
Output Files

The various output files produced by snps are detailed below. Output files are saved in the
output directory, which is defined at the instantiation of a SNPs object.


Save SNPs

SNPs can be saved with SNPs.save. By default, one tab-separated
.txt or .vcf file (vcf=True) is output when SNPs are saved. If comma is specified as
the separator (sep=","), the default extension is .csv.

The content of non-VCF files (after comment lines, which start with #) is as follows:







	Column

	Description





	rsid

	SNP ID



	chromosome

	Chromosome of SNP



	position

	Position of SNP



	genotype

	Genotype of SNP






When filename is not specified, default filenames are used as described below.


SNPs.save


<source>_<assembly>.txt / <source>_<assembly>.csv

Where source is the detected source(s) of SNPs data and assembly is the assembly of the
SNPs being saved.







            

          

      

      

    

  

    
      
          
            
  
Installation

snps is available [https://pypi.org/project/snps/] on the
Python Package Index [https://pypi.org]. Install snps (and its required
Python dependencies) via pip:

$ pip install snps






Installation and Usage on a Raspberry Pi

The instructions below provide the steps to install snps on a
Raspberry Pi [https://www.raspberrypi.org] (tested with
“Raspberry Pi OS [https://www.raspberrypi.org/downloads/raspberry-pi-os/] (32-bit) Lite”,
release date 2020-08-20). For more details about Python on the Raspberry Pi, see
here [https://www.raspberrypi.org/documentation/linux/software/python.md].


Note

Text after a prompt (e.g., $) is the command to type at the command line. The
instructions assume a fresh install of Raspberry Pi OS and that after logging in as
the pi user, the current working directory is /home/pi.




	Install pip for Python 3:

pi@raspberrypi:~ $ sudo apt install python3-pip





Press “y” followed by “enter” to continue. This enables us to install packages from the
Python Package Index.



	Install the venv module:

pi@raspberrypi:~ $ sudo apt install python3-venv





Press “y” followed by “enter” to continue. This enables us to create a
virtual environment [https://docs.python.org/3/library/venv.html] to isolate the snps
installation from other system Python packages.



	Install ATLAS [https://github.com/Kitt-AI/snowboy/issues/262#issuecomment-324997127]:

pi@raspberrypi:~ $ sudo apt install libatlas-base-dev





Press “y” followed by “enter” to continue. This is required for NumPy [https://numpy.org], a
dependency of snps.



	Create a directory for snps and change working directory:

pi@raspberrypi:~ $ mkdir snps
pi@raspberrypi:~ $ cd snps







	Create a virtual environment for snps:

pi@raspberrypi:~/snps $ python3 -m venv .venv





The virtual environment is located at /home/pi/snps/.venv.



	Activate the virtual environment:

pi@raspberrypi:~/snps $ source .venv/bin/activate





Now when you invoke Python or pip, the virtual environment’s version will be used (as
indicated by the (.venv) before the prompt). This can be verified as follows:

(.venv) pi@raspberrypi:~/snps $ which python
/home/pi/snps/.venv/bin/python







	Install snps:

(.venv) pi@raspberrypi:~/snps $ pip install snps







	Start Python:

(.venv) pi@raspberrypi:~/snps $ python
Python 3.7.3 (default, Jul 25 2020, 13:03:44)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>







	Use snps; examples shown in the README should now work.


	At completion of usage, the virtual environment can be deactivated:

(.venv) pi@raspberrypi:~/snps $ deactivate
pi@raspberrypi:~/snps $













            

          

      

      

    

  

    
      
          
            
  
snps Banner

The snps banner is composed of nucleotides from
GRCh38 mitochondrial DNA [https://www.ncbi.nlm.nih.gov/nuccore/NC_012920.1]. SNPs are
represented by lighter colored nucleotides.

The SVG file was modified from a version created with
macSVG [https://github.com/dsward2/macsvg/].

The PNG file was exported from macSVG [https://github.com/dsward2/macsvg/].

The color scheme was generated by ColorBrewer [http://colorbrewer2.org/].


SNPs

The SNPs highlighted in the banner were identified with the
UCSC Genome Browser [https://genome.ucsc.edu/]. The dbSNP accessions for the SNPs are as
follows:


	rs3883917


	rs370271105


	rs3087742


	rs369034419


	rs147830800


	rs369070397


	rs144402189


	rs139684161


	rs375589100


	rs370482130


	rs62581312


	rs117135796


	rs370716192


	rs41473347


	rs113913230


	rs368807878


	rs371543232


	rs2857291


	rs72619362


	rs372099630


	rs3135032


	rs369669319


	rs368534078


	rs372889209


	rs372439069


	rs41531144


	rs372946833


	rs41323649


	rs368463610


	rs3937037


	rs375896687


	rs145412228


	rs376013487


	rs372529808


	rs41334645


	rs372003323


	rs41400048


	rs2853515


	rs201801609


	rs41528348


	rs3927813


	rs66492218


	rs371975106


	rs373732637


	rs117394573


	rs3883865


	rs28678375





References


	Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI
database of genetic variation. Nucleic Acids Res. 2001 Jan 1; 29(1):308-11.


	Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for
Biotechnology Information, National Library of Medicine. dbSNP accession: <listed above> (dbSNP
Build ID: 142). Available from: http://www.ncbi.nlm.nih.gov/SNP/









            

          

      

      

    

  

    
      
          
            
  
Changelog

The changelog is maintained here: https://github.com/apriha/snps/releases




            

          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit
will always be given.


Bug reports

When reporting a bug [https://github.com/apriha/snps/issues] please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.






Documentation improvements

snps could always use more documentation, whether as part of the official snps docs, in
docstrings, or even on the web in blog posts, articles, and such. See below for info on how to
generate documentation.



Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/apriha/snps/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that code contributions are welcome :)






Development

To set up snps for local development:


	Fork snps [https://github.com/apriha/snps] (look for the “Fork” button).


	Clone your fork locally:

$ git clone git@github.com:your_name_here/snps.git







	Create a branch for local development from the develop branch:

$ cd snps
$ git checkout develop
$ git checkout -b name-of-your-bugfix-or-feature develop







	Setup a development environment:

$ pip install pipenv
$ pipenv install --dev







	When you’re done making changes, run all the tests with:

$ pipenv run pytest --cov-report=html --cov=snps tests






Note

Downloads during tests are disabled by default. To enable downloads, set the
environment variable DOWNLOADS_ENABLED=true.




Note

If you receive errors when running the tests, you may need to specify the temporary
directory with an environment variable, e.g., TMPDIR="/path/to/tmp/dir".




Note

After running the tests, a coverage report can be viewed by opening
htmlcov/index.html in a browser.





	Check code formatting:

$ pipenv run black --check --diff .







	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.





Pull request guidelines

If you need some code review or feedback while you’re developing the code, just make the pull
request.

For merging, you should:


	Ensure tests pass.


	Update documentation when there’s new API, functionality, etc.


	Add yourself to CONTRIBUTORS.rst if you’d like.







Documentation

After the development environment has been setup, documentation can be generated via the
following command:

$ pipenv run sphinx-build -T -E -D language=en docs docs/_build





Then, the documentation can be viewed by opening docs/_build/index.html in a browser.





            

          

      

      

    

  

    
      
          
            
  
Contributors

Contributors [https://github.com/apriha/snps/graphs/contributors] to
snps are listed below.


Core Developers







	Name

	GitHub





	Andrew Riha

	@apriha [https://github.com/apriha]



	Will Jones

	@willgdjones [https://github.com/willgdjones]








Other Contributors

Listed in alphabetical order.







	Name

	GitHub





	Alan Moffet

	@amoffet [https://github.com/amoffet]



	Anatoli Babenia

	@abitrolly [https://github.com/abitrolly]



	Castedo Ellerman

	@castedo [https://github.com/castedo]



	Gerard Manning

	@GerardManning [https://github.com/GerardManning]



	Julian Runnels

	@JulianRunnels [https://github.com/JulianRunnels]



	Kevin Arvai

	@arvkevi [https://github.com/arvkevi]



	Phil Palmer

	@PhilPalmer [https://github.com/PhilPalmer]



	Yoan Bouzin

	









            

          

      

      

    

  

    
      
          
            
  
Code Documentation


SNPs

SNPs reads, writes, merges, and remaps genotype / raw data files.


	
class snps.snps.SNPs(file='', only_detect_source=False, assign_par_snps=False, output_dir='output', resources_dir='resources', deduplicate=True, deduplicate_XY_chrom=True, deduplicate_MT_chrom=True, parallelize=False, processes=2, rsids=())

	Bases: object


	
__init__(file='', only_detect_source=False, assign_par_snps=False, output_dir='output', resources_dir='resources', deduplicate=True, deduplicate_XY_chrom=True, deduplicate_MT_chrom=True, parallelize=False, processes=2, rsids=())

	Object used to read, write, and remap genotype / raw data files.


	Parameters

	
	file (str or bytes) – path to file to load or bytes to load


	only_detect_source (bool) – only detect the source of the data


	assign_par_snps (bool) – assign PAR SNPs to the X and Y chromosomes


	output_dir (str) – path to output directory


	resources_dir (str) – name / path of resources directory


	deduplicate (bool) – deduplicate RSIDs and make SNPs available as SNPs.duplicate


	deduplicate_MT_chrom (bool) – deduplicate alleles on MT; see SNPs.heterozygous_MT


	deduplicate_XY_chrom (bool or str) – deduplicate alleles in the non-PAR regions of X and Y for males; see SNPs.discrepant_XY
if a str then this is the sex determination method to use X Y or XY


	parallelize (bool) – utilize multiprocessing to speedup calculations


	processes (int) – processes to launch if multiprocessing


	rsids (tuple, optional) – rsids to extract if loading a VCF file













	
property assembly

	Assembly of SNPs.


	Returns

	



	Return type

	str










	
property build

	Build of SNPs.


	Returns

	



	Return type

	int










	
property build_detected

	Status indicating if build of SNPs was detected.


	Returns

	



	Return type

	bool










	
property chip

	Detected deduced genotype / chip array, if any, per
compute_cluster_overlap.


	Returns

	detected chip array, else empty str



	Return type

	str










	
property chip_version

	Detected genotype / chip array version, if any, per
compute_cluster_overlap.

Notes

Chip array version is only applicable to 23andMe (v3, v4, v5)  and AncestryDNA
(v1, v2) files.


	Returns

	detected chip array version, e.g., ‘v4’, else empty str



	Return type

	str










	
property chromosomes

	Chromosomes of SNPs.


	Returns

	list of str chromosomes (e.g., [‘1’, ‘2’, ‘3’, ‘MT’], empty list if no chromosomes



	Return type

	list










	
property chromosomes_summary

	Summary of the chromosomes of SNPs.


	Returns

	human-readable listing of chromosomes (e.g., ‘1-3, MT’), empty str if no chromosomes



	Return type

	str










	
property cluster

	Detected chip cluster, if any, per
compute_cluster_overlap.

Notes

Refer to compute_cluster_overlap
for more details about chip clusters.


	Returns

	detected chip cluster, e.g., ‘c1’, else empty str



	Return type

	str










	
compute_cluster_overlap(cluster_overlap_threshold=0.95)

	Compute overlap with chip clusters.

Chip clusters, which are defined in 1, are associated with deduced genotype /
chip arrays and DTC companies.

This method also sets the values returned by the cluster, chip, and
chip_version properties, based on max overlap, if the specified threshold is
satisfied.


	Parameters

	cluster_overlap_threshold (float) – threshold for cluster to overlap this SNPs object, and vice versa, to set
values returned by the cluster, chip, and chip_version properties



	Returns

	pandas.DataFrame with the following columns:


	company_composition
	DTC company composition of associated cluster from 1



	chip_base_deduced
	deduced genotype / chip array of associated cluster from 1



	snps_in_cluster
	count of SNPs in cluster



	snps_in_common
	count of SNPs in common with cluster (inner merge with cluster)



	overlap_with_cluster
	percentage overlap of snps_in_common with cluster



	overlap_with_self
	percentage overlap of snps_in_common with this SNPs object









	Return type

	pandas.DataFrame





References


	1(1,2,3,4)

	Chang Lu, Bastian Greshake Tzovaras, Julian Gough, A survey of
direct-to-consumer genotype data, and quality control tool
(GenomePrep) for research, Computational and Structural
Biotechnology Journal, Volume 19, 2021, Pages 3747-3754, ISSN
2001-0370, https://doi.org/10.1016/j.csbj.2021.06.040.










	
property count

	Count of SNPs.


	Returns

	



	Return type

	int










	
detect_build()

	Detect build of SNPs.

Use the coordinates of common SNPs to identify the build / assembly of a genotype file
that is being loaded.

Notes


	rs3094315 : plus strand in 36, 37, and 38


	rs11928389 : plus strand in 36, minus strand in 37 and 38


	rs2500347 : plus strand in 36 and 37, minus strand in 38


	rs964481 : plus strand in 36, 37, and 38


	rs2341354 : plus strand in 36, 37, and 38


	rs3850290 : plus strand in 36, 37, and 38


	rs1329546 : plus strand in 36, 37, and 38





	Returns

	detected build of SNPs, else 0



	Return type

	int





References


	Yates et. al. (doi:10.1093/bioinformatics/btu613),
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613


	Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098


	Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001
Jan 1;29(1):308-11.


	Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center
for Biotechnology Information, National Library of Medicine. dbSNP accession: rs3094315,
rs11928389, rs2500347, rs964481, rs2341354, rs3850290, and rs1329546
(dbSNP Build ID: 151). Available from: http://www.ncbi.nlm.nih.gov/SNP/









	
determine_sex(heterozygous_x_snps_threshold=0.03, y_snps_not_null_threshold=0.3, chrom='X')

	Determine sex from SNPs using thresholds.


	Parameters

	
	heterozygous_x_snps_threshold (float) – percentage heterozygous X SNPs; above this threshold, Female is determined


	y_snps_not_null_threshold (float) – percentage Y SNPs that are not null; above this threshold, Male is determined


	chrom ({“X”, “Y”}) – use X or Y chromosome SNPs to determine sex






	Returns

	‘Male’ or ‘Female’ if detected, else empty str



	Return type

	str










	
property discrepant_XY

	Discrepant XY SNPs.

A discrepant XY SNP is a heterozygous SNP in the non-PAR region of the X
or Y chromosome found during deduplication for a detected male genotype.


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
property discrepant_merge_genotypes

	SNPs with discrepant genotypes discovered while merging SNPs.

Notes

Definitions of columns in this dataframe are as follows:







	Column

	Description





	rsid

	SNP ID



	chrom

	Chromosome of existing SNP



	pos

	Position of existing SNP



	genotype

	Genotype of existing SNP



	chrom_added

	Chromosome of added SNP



	pos_added

	Position of added SNP



	genotype_added

	Genotype of added SNP (discrepant with genotype)







	Returns

	



	Return type

	pandas.DataFrame










	
property discrepant_merge_positions

	SNPs with discrepant positions discovered while merging SNPs.

Notes

Definitions of columns in this dataframe are as follows:







	Column

	Description





	rsid

	SNP ID



	chrom

	Chromosome of existing SNP



	pos

	Position of existing SNP



	genotype

	Genotype of existing SNP



	chrom_added

	Chromosome of added SNP



	pos_added

	Position of added SNP (discrepant with pos)



	genotype_added

	Genotype of added SNP







	Returns

	



	Return type

	pandas.DataFrame










	
property discrepant_merge_positions_genotypes

	SNPs with discrepant positions and / or genotypes discovered while merging SNPs.

Notes

Definitions of columns in this dataframe are as follows:







	Column

	Description





	rsid

	SNP ID



	chrom

	Chromosome of existing SNP



	pos

	Position of existing SNP



	genotype

	Genotype of existing SNP



	chrom_added

	Chromosome of added SNP



	pos_added

	Position of added SNP (possibly discrepant with pos)



	genotype_added

	Genotype of added SNP (possibly discrepant with genotype)







	Returns

	



	Return type

	pandas.DataFrame










	
property discrepant_vcf_position

	SNPs with discrepant positions discovered while saving VCF.


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
property duplicate

	Duplicate SNPs.

A duplicate SNP has the same RSID as another SNP. The first occurrence
of the RSID is not considered a duplicate SNP.


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
get_count(chrom='')

	Count of SNPs.


	Parameters

	chrom (str, optional) – chromosome (e.g., “1”, “X”, “MT”)



	Returns

	



	Return type

	int










	
static get_par_regions(build)

	Get PAR regions for the X and Y chromosomes.


	Parameters

	build (int) – build of SNPs



	Returns

	PAR regions for the given build



	Return type

	pandas.DataFrame





References


	Genome Reference Consortium, https://www.ncbi.nlm.nih.gov/grc/human


	Yates et. al. (doi:10.1093/bioinformatics/btu613),
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613


	Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098









	
heterozygous(chrom='')

	Get heterozygous SNPs.


	Parameters

	chrom (str, optional) – chromosome (e.g., “1”, “X”, “MT”)



	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
property heterozygous_MT

	Heterozygous SNPs on the MT chromosome found during deduplication.


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
homozygous(chrom='')

	Get homozygous SNPs.


	Parameters

	chrom (str, optional) – chromosome (e.g., “1”, “X”, “MT”)



	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
identify_low_quality_snps()

	Identify low quality SNPs based on chip clusters.

Any low quality SNPs are removed from the
snps_qc dataframe and are made
available as low_quality.

Notes

Chip clusters, which are defined in 1, are associated with low quality SNPs.
As such, low quality SNPs will only be identified when this SNPs object corresponds
to a cluster per
compute_cluster_overlap().






	
property low_quality

	SNPs identified as low quality, if any, per
identify_low_quality_snps().


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
merge(snps_objects=(), discrepant_positions_threshold=100, discrepant_genotypes_threshold=500, remap=True, chrom='')

	Merge other SNPs objects into this SNPs object.


	Parameters

	
	snps_objects (list or tuple of SNPs) – other SNPs objects to merge into this SNPs object


	discrepant_positions_threshold (int) – threshold for discrepant SNP positions between existing data and data to be loaded;
a large value could indicate mismatched genome assemblies


	discrepant_genotypes_threshold (int) – threshold for discrepant genotype data between existing data and data to be loaded;
a large value could indicated mismatched individuals


	remap (bool) – if necessary, remap other SNPs objects to have the same build as this SNPs object
before merging


	chrom (str, optional) – chromosome to merge (e.g., “1”, “Y”, “MT”)






	Returns

	for each SNPs object to merge, a dict with the following items:


	merged (bool)
	whether SNPs object was merged



	common_rsids (pandas.Index)
	SNPs in common



	discrepant_position_rsids (pandas.Index)
	SNPs with discrepant positions



	discrepant_genotype_rsids (pandas.Index)
	SNPs with discrepant genotypes









	Return type

	list of dict





References


	Fluent Python by Luciano Ramalho (O’Reilly). Copyright 2015 Luciano Ramalho,
978-1-491-94600-8.









	
notnull(chrom='')

	Get not null genotype SNPs.


	Parameters

	chrom (str, optional) – chromosome (e.g., “1”, “X”, “MT”)



	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
property phased

	Indicates if genotype is phased.


	Returns

	



	Return type

	bool










	
predict_ancestry(output_directory=None, write_predictions=False, models_directory=None, aisnps_directory=None, n_components=None, k=None, thousand_genomes_directory=None, samples_directory=None, algorithm=None, aisnps_set=None)

	Predict genetic ancestry for SNPs.

Predictions by ezancestry [https://github.com/arvkevi/ezancestry].

Notes

Populations below are described here [https://www.internationalgenome.org/faq/what-do-the-population-codes-mean/].


	Parameters

	various (optional) – See the available settings for predict at ezancestry [https://github.com/arvkevi/ezancestry].



	Returns

	dict with the following keys:


	population_code (str)
	max predicted population for the sample



	population_description (str)
	descriptive name of the population



	population_percent (float)
	predicted probability for the max predicted population



	superpopulation_code (str)
	max predicted super population (continental) for the sample



	superpopulation_description (str)
	descriptive name of the super population



	superpopulation_percent (float)
	predicted probability for the max predicted super population



	ezancestry_df (pandas.DataFrame)
	pandas.DataFrame with the following columns:


	component1, component2, component3
	The coordinates of the sample in the dimensionality-reduced component space. Can be
used as (x, y, z,) coordinates for plotting in a 3d scatter plot.



	predicted_population_population
	The max predicted population for the sample.



	ACB, ASW, BEB, CDX, CEU, CHB, CHS, CLM, ESN, FIN, GBR, GIH, GWD, IBS, ITU, JPT, KHV, LWK, MSL, MXL, PEL, PJL, PUR, STU, TSI, YRI
	Predicted probabilities for each of the populations. These sum to 1.0.



	predicted_population_superpopulation
	The max predicted super population (continental) for the sample.



	AFR, AMR, EAS, EUR, SAS
	Predicted probabilities for each of the super populations. These sum to 1.0.



	population_description, superpopulation_name
	Descriptive names of the population and super population.













	Return type

	dict










	
remap(target_assembly, complement_bases=True)

	Remap SNP coordinates from one assembly to another.

This method uses the assembly map endpoint of the Ensembl REST API service (via
Resources’s EnsemblRestClient) to convert SNP coordinates / positions from one
assembly to another. After remapping, the coordinates / positions for the
SNPs will be that of the target assembly.

If the SNPs are already mapped relative to the target assembly, remapping will not be
performed.


	Parameters

	
	target_assembly ({‘NCBI36’, ‘GRCh37’, ‘GRCh38’, 36, 37, 38}) – assembly to remap to


	complement_bases (bool) – complement bases when remapping SNPs to the minus strand






	Returns

	
	chromosomes_remapped (list of str) – chromosomes remapped


	chromosomes_not_remapped (list of str) – chromosomes not remapped










Notes

An assembly is also know as a “build.” For example:

Assembly NCBI36 = Build 36
Assembly GRCh37 = Build 37
Assembly GRCh38 = Build 38

See https://www.ncbi.nlm.nih.gov/assembly for more information about assemblies and
remapping.

References


	Ensembl, Assembly Map Endpoint,
http://rest.ensembl.org/documentation/info/assembly_map


	Yates et. al. (doi:10.1093/bioinformatics/btu613),
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613


	Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098









	
property sex

	Sex derived from SNPs.


	Returns

	‘Male’ or ‘Female’ if detected, else empty str



	Return type

	str










	
property snps

	Normalized SNPs.

Notes

Throughout snps, the “normalized snps dataframe” is defined as follows:








	Column

	Description

	pandas dtype





	rsid *

	SNP ID

	object (string)



	chrom

	Chromosome of SNP

	object (string)



	pos

	Position of SNP (relative to build)

	uint32



	genotype †

	Genotype of SNP

	object (string)







	*

	Dataframe index



	†

	Genotype can be null, length 1, or length 2. Specifically, genotype is null if not
called or unavailable. Otherwise, for autosomal chromosomes, genotype is two alleles.
For the X and Y chromosomes, male genotypes are one allele in the non-PAR regions
(assuming deduplicate_XY_chrom). For the MT chromosome, genotypes are one allele
(assuming deduplicate_MT_chrom).






	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
property snps_qc

	Normalized SNPs, after quality control.

Any low quality SNPs, identified per
identify_low_quality_snps(),
are not included in the result.


	Returns

	normalized snps dataframe



	Return type

	pandas.DataFrame










	
sort()

	Sort SNPs based on ordered chromosome list and position.






	
property source

	Summary of the SNP data source(s).


	Returns

	Data source(s) for this SNPs object, separated by “, “.



	Return type

	str










	
property summary

	Summary of SNPs.


	Returns

	summary info if SNPs is valid, else {}



	Return type

	dict










	
to_csv(filename='', atomic=True, **kwargs)

	Output SNPs as comma-separated values.


	Parameters

	
	filename (str or buffer) – filename for file to save or buffer to write to


	atomic (bool) – atomically write output to a file on local filesystem


	**kwargs – additional parameters to pandas.DataFrame.to_csv






	Returns

	path to file in output directory if SNPs were saved, else empty str



	Return type

	str










	
to_tsv(filename='', atomic=True, **kwargs)

	Output SNPs as tab-separated values.

Note that this results in the same default output as save.


	Parameters

	
	filename (str or buffer) – filename for file to save or buffer to write to


	atomic (bool) – atomically write output to a file on local filesystem


	**kwargs – additional parameters to pandas.DataFrame.to_csv






	Returns

	path to file in output directory if SNPs were saved, else empty str



	Return type

	str










	
to_vcf(filename='', atomic=True, alt_unavailable='.', chrom_prefix='', qc_only=False, qc_filter=False, **kwargs)

	Output SNPs as Variant Call Format.


	Parameters

	
	filename (str or buffer) – filename for file to save or buffer to write to


	atomic (bool) – atomically write output to a file on local filesystem


	alt_unavailable (str) – representation of ALT allele when ALT is not able to be determined


	chrom_prefix (str) – prefix for chromosomes in VCF CHROM column


	qc_only (bool) – output only SNPs that pass quality control


	qc_filter (bool) – populate FILTER column based on quality control results


	**kwargs – additional parameters to pandas.DataFrame.to_csv






	Returns

	path to file in output directory if SNPs were saved, else empty str



	Return type

	str





Notes

Parameters qc_only and qc_filter, if true, will identify low quality SNPs per
identify_low_quality_snps(),
if not done already. Moreover, these parameters have no effect if this SNPs
object does not map to a cluster per
compute_cluster_overlap().

References


	The Variant Call Format (VCF) Version 4.2 Specification, 8 Mar 2019,
https://samtools.github.io/hts-specs/VCFv4.2.pdf









	
property unannotated_vcf

	Indicates if VCF file is unannotated.


	Returns

	



	Return type

	bool










	
property valid

	Determine if SNPs is valid.

SNPs is valid when the input file has been successfully parsed.


	Returns

	True if SNPs is valid



	Return type

	bool















snps.ensembl

Ensembl REST client.

Notes

Modified from https://github.com/Ensembl/ensembl-rest/wiki/Example-Python-Client.

References


	Yates et. al. (doi:10.1093/bioinformatics/btu613),
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613


	Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098





	
class snps.ensembl.EnsemblRestClient(server='https://rest.ensembl.org', reqs_per_sec=15)

	Bases: object


	
__init__(server='https://rest.ensembl.org', reqs_per_sec=15)

	




	
perform_rest_action(endpoint, hdrs=None, params=None)

	









snps.io

Classes for reading and writing SNPs.


snps.io.reader

Class for reading SNPs.


	
class snps.io.reader.Reader(file='', only_detect_source=False, resources=None, rsids=())

	Bases: object

Class for reading and parsing raw data / genotype files.


	
__init__(file='', only_detect_source=False, resources=None, rsids=())

	Initialize a Reader.


	Parameters

	
	file (str or bytes) – path to file to load or bytes to load


	only_detect_source (bool) – only detect the source of the data


	resources (Resources) – instance of Resources


	rsids (tuple, optional) – rsids to extract if loading a VCF file













	
static is_gzip(bytes_data)

	Check whether or not a bytes_data file is a valid gzip file.






	
static is_zip(bytes_data)

	Check whether or not a bytes_data file is a valid Zip file.






	
read()

	Read and parse a raw data / genotype file.


	Returns

	dict with the following items:


	snps (pandas.DataFrame)
	dataframe of parsed SNPs



	source (str)
	detected source of SNPs



	phased (bool)
	flag indicating if SNPs are phased









	Return type

	dict










	
read_23andme(file, compression, joined=True)

	Read and parse 23andMe file.

https://www.23andme.com


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_ancestry(file, compression)

	Read and parse Ancestry.com file.

http://www.ancestry.com


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_circledna(file, compression)

	Read and parse CircleDNA file.

https://circledna.com/

Notes

This method attempts to read and parse a whole exome file, optionally compressed
with gzip or zip. Some assumptions are made throughout this process:



	SNPs that are not annotated with an RSID are skipped


	Insertions and deletions are skipped








	Parameters

	file (str or bytes) – path to file or bytes to load



	Returns

	result of read_helper



	Return type

	dict










	
read_dnaland(file, compression)

	Read and parse DNA.land files.

https://dna.land/


	Parameters

	data (str) – data string



	Returns

	result of read_helper



	Return type

	dict










	
read_ftdna(file, compression)

	Read and parse Family Tree DNA (FTDNA) file.

https://www.familytreedna.com


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_ftdna_famfinder(file, compression)

	Read and parse Family Tree DNA (FTDNA) “famfinder” file.

https://www.familytreedna.com


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_generic(file, compression, skip=1)

	Read and parse generic CSV or TSV file.

Notes

Assumes columns are ‘rsid’, ‘chrom’ / ‘chromosome’, ‘pos’ / ‘position’, and ‘genotype’;
values are comma separated; unreported genotypes are indicated by ‘–’; and one header row
precedes data. For example:


rsid,chromosome,position,genotype
rs1,1,1,AA
rs2,1,2,CC
rs3,1,3,–





	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_genes_for_good(file, compression)

	Read and parse Genes For Good file.

https://genesforgood.sph.umich.edu/readme/readme1.2.txt


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_gsa(data_or_filename, compresion, comments)

	Read and parse Illumina Global Screening Array files


	Parameters

	data_or_filename (str or bytes) – either the filename to read from or the bytes data itself



	Returns

	result of read_helper



	Return type

	dict










	
read_helper(source, parser)

	Generic method to help read files.


	Parameters

	
	source (str) – name of data source


	parser (func) – parsing function, which returns a tuple with the following items:


	0 (pandas.DataFrame)
	dataframe of parsed SNPs (empty if only detecting source)



	1 (bool), optional
	flag indicating if SNPs are phased



	2 (int), optional
	detected build of SNPs











	Returns

	dict with the following items:


	snps (pandas.DataFrame)
	dataframe of parsed SNPs



	source (str)
	detected source of SNPs



	phased (bool)
	flag indicating if SNPs are phased



	build (int)
	detected build of SNPs









	Return type

	dict





References


	Fluent Python by Luciano Ramalho (O’Reilly). Copyright 2015 Luciano Ramalho,
978-1-491-94600-8.









	
read_livingdna(file, compression)

	Read and parse LivingDNA file.

https://livingdna.com/


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_mapmygenome(file, compression, header)

	Read and parse Mapmygenome file.

https://mapmygenome.in


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_myheritage(file, compression)

	Read and parse MyHeritage file.

https://www.myheritage.com


	Parameters

	file (str) – path to file



	Returns

	result of read_helper



	Return type

	dict










	
read_snps_csv(file, comments, compression)

	Read and parse CSV file generated by snps.

https://pypi.org/project/snps/


	Parameters

	
	file (str or buffer) – path to file or buffer to read


	comments (str) – comments at beginning of file






	Returns

	result of read_helper



	Return type

	dict










	
read_tellmegen(file, compression)

	Read and parse tellmeGen files.

https://www.tellmegen.com/


	Parameters

	data (str) – data string



	Returns

	result of read_helper



	Return type

	dict










	
read_vcf(file, compression, provider, rsids=())

	Read and parse VCF file.

Notes

This method attempts to read and parse a VCF file or buffer, optionally
compressed with gzip. Some assumptions are made throughout this process:



	SNPs that are not annotated with an RSID are skipped


	If the VCF contains multiple samples, only the first sample is used to
lookup the genotype


	Insertions and deletions are skipped


	If a sample allele is not specified, the genotype is reported as NaN


	If a sample allele refers to a REF or ALT allele that is not specified,
the genotype is reported as NaN








	Parameters

	
	file (str or bytes) – path to file or bytes to load


	rsids (tuple, optional) – rsids to extract if loading a VCF file






	Returns

	result of read_helper



	Return type

	dict














	
snps.io.reader.get_empty_snps_dataframe()

	Get empty dataframe normalized for usage with snps.


	Returns

	



	Return type

	pd.DataFrame











snps.io.writer

Class for writing SNPs.


	
class snps.io.writer.Writer(snps=None, filename='', vcf=False, atomic=True, vcf_alt_unavailable='.', vcf_chrom_prefix='', vcf_qc_only=False, vcf_qc_filter=False, **kwargs)

	Bases: object

Class for writing SNPs to files.


	
__init__(snps=None, filename='', vcf=False, atomic=True, vcf_alt_unavailable='.', vcf_chrom_prefix='', vcf_qc_only=False, vcf_qc_filter=False, **kwargs)

	Initialize a Writer.


	Parameters

	
	snps (SNPs) – SNPs to save to file or write to buffer


	filename (str or buffer) – filename for file to save or buffer to write to


	vcf (bool) – flag to save file as VCF


	atomic (bool) – atomically write output to a file on local filesystem


	vcf_alt_unavailable (str) – representation of VCF ALT allele when ALT is not able to be determined


	vcf_chrom_prefix (str) – prefix for chromosomes in VCF CHROM column


	vcf_qc_only (bool) – for VCF, output only SNPs that pass quality control


	vcf_qc_filter (bool) – for VCF, populate VCF FILTER column based on quality control results


	**kwargs – additional parameters to pandas.DataFrame.to_csv













	
write()

	Write SNPs to file or buffer.


	Returns

	
	str – path to file in output directory if SNPs were saved, else empty str


	discrepant_vcf_position (pd.DataFrame) – SNPs with discrepant positions discovered while saving VCF





















snps.resources

Class for downloading and loading required external resources.

References


	International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature. 2001 Feb 15;409(6822):860-921.
http://dx.doi.org/10.1038/35057062


	hg19 (GRCh37): Hiram Clawson, Brooke Rhead, Pauline Fujita, Ann Zweig, Katrina
Learned, Donna Karolchik and Robert Kuhn, https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19


	Yates et. al. (doi:10.1093/bioinformatics/btu613),
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613


	Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098





	
class snps.resources.ReferenceSequence(ID='', url='', path='', assembly='', species='', taxonomy='')

	Bases: object

Object used to represent and interact with a reference sequence.


	
property ID

	Get reference sequence chromosome.


	Returns

	



	Return type

	str










	
__init__(ID='', url='', path='', assembly='', species='', taxonomy='')

	Initialize a ReferenceSequence object.


	Parameters

	
	ID (str) – reference sequence chromosome


	url (str) – url to Ensembl reference sequence


	path (str) – path to local reference sequence


	assembly (str) – reference sequence assembly (e.g., “GRCh37”)


	species (str) – reference sequence species


	taxonomy (str) – reference sequence taxonomy








References


	The Variant Call Format (VCF) Version 4.2 Specification, 8 Mar 2019,
https://samtools.github.io/hts-specs/VCFv4.2.pdf









	
property assembly

	Get reference sequence assembly.


	Returns

	



	Return type

	str










	
property build

	Get reference sequence build.


	Returns

	e.g., “B37”



	Return type

	str










	
property chrom

	Get reference sequence chromosome.


	Returns

	



	Return type

	str










	
clear()

	Clear reference sequence.






	
property end

	Get reference sequence end position (1-based).


	Returns

	



	Return type

	int










	
property length

	Get reference sequence length.


	Returns

	



	Return type

	int










	
property md5

	Get reference sequence MD5 hash.


	Returns

	



	Return type

	str










	
property path

	Get path to local reference sequence.


	Returns

	



	Return type

	str










	
property sequence

	Get reference sequence.


	Returns

	



	Return type

	np.array(dtype=np.uint8)










	
property species

	Get reference sequence species.


	Returns

	



	Return type

	str










	
property start

	Get reference sequence start position (1-based).


	Returns

	



	Return type

	int










	
property taxonomy

	Get reference sequence taxonomy.


	Returns

	



	Return type

	str










	
property url

	Get URL to Ensembl reference sequence.


	Returns

	



	Return type

	str














	
class snps.resources.Resources(*args, **kwargs)

	Bases: object

Object used to manage resources required by snps.


	
__init__(resources_dir='resources')

	Initialize a Resources object.


	Parameters

	resources_dir (str) – name / path of resources directory










	
download_example_datasets()

	Download example datasets from openSNP [https://opensnp.org].

Per openSNP, “the data is donated into the public domain using CC0 1.0 [http://creativecommons.org/publicdomain/zero/1.0/].”


	Returns

	paths – paths to example datasets



	Return type

	list of str or empty str





References


	Greshake B, Bayer PE, Rausch H, Reda J (2014), “openSNP-A Crowdsourced Web Resource
for Personal Genomics,” PLOS ONE, 9(3): e89204,
https://doi.org/10.1371/journal.pone.0089204









	
get_all_reference_sequences(**kwargs)

	Get Homo sapiens reference sequences for Builds 36, 37, and 38 from Ensembl.

Notes

This function can download over 2.5GB of data.


	Returns

	dict of ReferenceSequence, else {}



	Return type

	dict










	
get_all_resources()

	Get / download all resources used throughout snps.

Notes

This function does not download reference sequences and the openSNP datadump,
due to their large sizes.


	Returns

	dict of resources



	Return type

	dict










	
get_assembly_mapping_data(source_assembly, target_assembly)

	Get assembly mapping data.


	Parameters

	
	source_assembly ({‘NCBI36’, ‘GRCh37’, ‘GRCh38’}) – assembly to remap from


	target_assembly ({‘NCBI36’, ‘GRCh37’, ‘GRCh38’}) – assembly to remap to






	Returns

	dict of json assembly mapping data if loading was successful, else {}



	Return type

	dict










	
get_chip_clusters()

	Get resource for identifying deduced genotype / chip array based on chip clusters.


	Returns

	



	Return type

	pandas.DataFrame





References


	Chang Lu, Bastian Greshake Tzovaras, Julian Gough, A survey of
direct-to-consumer genotype data, and quality control tool
(GenomePrep) for research, Computational and Structural
Biotechnology Journal, Volume 19, 2021, Pages 3747-3754, ISSN
2001-0370, https://doi.org/10.1016/j.csbj.2021.06.040.









	
get_dbsnp_151_37_reverse()

	Get and load RSIDs that are on the reference reverse (-) strand in dbSNP 151 and lower.


	Returns

	



	Return type

	pandas.DataFrame





References


	Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001 Jan 1;
29(1):308-11.


	Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center
for Biotechnology Information, National Library of Medicine. (dbSNP Build ID: 151).
Available from: http://www.ncbi.nlm.nih.gov/SNP/









	
get_gsa_chrpos()

	Get and load GSA chromosome position map.

https://support.illumina.com/downloads/infinium-global-screening-array-v2-0-product-files.html


	Returns

	



	Return type

	pandas.DataFrame










	
get_gsa_resources()

	Get resources for reading Global Screening Array files.

https://support.illumina.com/downloads/infinium-global-screening-array-v2-0-product-files.html


	Returns

	



	Return type

	dict










	
get_gsa_rsid()

	Get and load GSA RSID map.

https://support.illumina.com/downloads/infinium-global-screening-array-v2-0-product-files.html


	Returns

	



	Return type

	pandas.DataFrame










	
get_low_quality_snps()

	Get listing of low quality SNPs for quality control based on chip clusters.


	Returns

	



	Return type

	pandas.DataFrame





References


	Chang Lu, Bastian Greshake Tzovaras, Julian Gough, A survey of
direct-to-consumer genotype data, and quality control tool
(GenomePrep) for research, Computational and Structural
Biotechnology Journal, Volume 19, 2021, Pages 3747-3754, ISSN
2001-0370, https://doi.org/10.1016/j.csbj.2021.06.040.









	
get_opensnp_datadump_filenames()

	Get filenames internal to the openSNP [https://opensnp.org] datadump zip.

Per openSNP, “the data is donated into the public domain using CC0 1.0 [http://creativecommons.org/publicdomain/zero/1.0/].”

Notes

This function can download over 27GB of data. If the download is not successful,
try using a different tool like wget or curl to download the file and move it
to the resources directory (see _get_path_opensnp_datadump).


	Returns

	filenames – filenames internal to the openSNP datadump



	Return type

	list of str





References


	Greshake B, Bayer PE, Rausch H, Reda J (2014), “openSNP-A Crowdsourced Web Resource
for Personal Genomics,” PLOS ONE, 9(3): e89204,
https://doi.org/10.1371/journal.pone.0089204









	
get_reference_sequences(assembly='GRCh37', chroms=('1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y', 'MT'))

	Get Homo sapiens reference sequences for chroms of assembly.

Notes

This function can download over 800MB of data for each assembly.


	Parameters

	
	assembly ({‘NCBI36’, ‘GRCh37’, ‘GRCh38’}) – reference sequence assembly


	chroms (list of str) – reference sequence chromosomes






	Returns

	dict of ReferenceSequence, else {}



	Return type

	dict










	
load_opensnp_datadump_file(filename)

	Load the specified file from the openSNP datadump.

Per openSNP, “the data is donated into the public domain using CC0 1.0 [http://creativecommons.org/publicdomain/zero/1.0/].”


	Parameters

	filename (str) – filename internal to the openSNP datadump



	Returns

	content of specified file internal to the openSNP datadump



	Return type

	bytes





References


	Greshake B, Bayer PE, Rausch H, Reda J (2014), “openSNP-A Crowdsourced Web Resource
for Personal Genomics,” PLOS ONE, 9(3): e89204,
https://doi.org/10.1371/journal.pone.0089204














snps.utils

Utility classes and functions.


	
class snps.utils.Parallelizer(parallelize=False, processes=2)

	Bases: object


	
__init__(parallelize=False, processes=2)

	Initialize a Parallelizer.


	Parameters

	
	parallelize (bool) – utilize multiprocessing to speedup calculations


	processes (int) – processes to launch if multiprocessing

















	
class snps.utils.Singleton

	Bases: type






	
snps.utils.clean_str(s)

	Clean a string so that it can be used as a Python variable name.


	Parameters

	s (str) – string to clean



	Returns

	string that can be used as a Python variable name



	Return type

	str










	
snps.utils.create_dir(path)

	Create directory specified by path if it doesn’t already exist.


	Parameters

	path (str) – path to directory



	Returns

	True if path exists



	Return type

	bool










	
snps.utils.gzip_file(src, dest)

	Gzip a file.


	Parameters

	
	src (str) – path to file to gzip


	dest (str) – path to output gzip file






	Returns

	path to gzipped file



	Return type

	str










	
snps.utils.save_df_as_csv(df, path, filename, comment='', prepend_info=True, atomic=True, **kwargs)

	Save dataframe to a CSV file.


	Parameters

	
	df (pandas.DataFrame) – dataframe to save


	path (str) – path to directory where to save CSV file


	filename (str or buffer) – filename for file to save or buffer to write to


	comment (str) – header comment(s); one or more lines starting with ‘#’


	prepend_info (bool) – prepend file generation information as comments


	atomic (bool) – atomically write output to a file on local filesystem


	**kwargs – additional parameters to pandas.DataFrame.to_csv






	Returns

	path to saved file or buffer (empty str if error)



	Return type

	str or buffer










	
snps.utils.zip_file(src, dest, arcname)

	Zip a file.


	Parameters

	
	src (str) – path to file to zip


	dest (str) – path to output zip file


	arcname (str) – name of file in zip archive






	Returns

	path to zipped file



	Return type

	str













            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   s
   


   
     		 	

     		
       s	

     
       	[image: -]
       	
       snps	
       

     
       	
       	   
       snps.ensembl	
       

     
       	
       	   
       snps.io	
       

     
       	
       	   
       snps.io.reader	
       

     
       	
       	   
       snps.io.writer	
       

     
       	
       	   
       snps.resources	
       

     
       	
       	   
       snps.snps	
       

     
       	
       	   
       snps.utils	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


_


  	
      	__init__() (snps.ensembl.EnsemblRestClient method)

      
        	(snps.io.reader.Reader method)


        	(snps.io.writer.Writer method)


        	(snps.resources.ReferenceSequence method)


        	(snps.resources.Resources method)


        	(snps.snps.SNPs method)


        	(snps.utils.Parallelizer method)


      


  





A


  	
      	assembly (snps.resources.ReferenceSequence property)

      
        	(snps.snps.SNPs property)


      


  





B


  	
      	build (snps.resources.ReferenceSequence property)

      
        	(snps.snps.SNPs property)


      


  

  	
      	build_detected (snps.snps.SNPs property)


  





C


  	
      	chip (snps.snps.SNPs property)


      	chip_version (snps.snps.SNPs property)


      	chrom (snps.resources.ReferenceSequence property)


      	chromosomes (snps.snps.SNPs property)


      	chromosomes_summary (snps.snps.SNPs property)


  

  	
      	clean_str() (in module snps.utils)


      	clear() (snps.resources.ReferenceSequence method)


      	cluster (snps.snps.SNPs property)


      	compute_cluster_overlap() (snps.snps.SNPs method)


      	count (snps.snps.SNPs property)


      	create_dir() (in module snps.utils)


  





D


  	
      	detect_build() (snps.snps.SNPs method)


      	determine_sex() (snps.snps.SNPs method)


      	discrepant_merge_genotypes (snps.snps.SNPs property)


      	discrepant_merge_positions (snps.snps.SNPs property)


  

  	
      	discrepant_merge_positions_genotypes (snps.snps.SNPs property)


      	discrepant_vcf_position (snps.snps.SNPs property)


      	discrepant_XY (snps.snps.SNPs property)


      	download_example_datasets() (snps.resources.Resources method)


      	duplicate (snps.snps.SNPs property)


  





E


  	
      	end (snps.resources.ReferenceSequence property)


  

  	
      	EnsemblRestClient (class in snps.ensembl)


  





G


  	
      	get_all_reference_sequences() (snps.resources.Resources method)


      	get_all_resources() (snps.resources.Resources method)


      	get_assembly_mapping_data() (snps.resources.Resources method)


      	get_chip_clusters() (snps.resources.Resources method)


      	get_count() (snps.snps.SNPs method)


      	get_dbsnp_151_37_reverse() (snps.resources.Resources method)


      	get_empty_snps_dataframe() (in module snps.io.reader)


  

  	
      	get_gsa_chrpos() (snps.resources.Resources method)


      	get_gsa_resources() (snps.resources.Resources method)


      	get_gsa_rsid() (snps.resources.Resources method)


      	get_low_quality_snps() (snps.resources.Resources method)


      	get_opensnp_datadump_filenames() (snps.resources.Resources method)


      	get_par_regions() (snps.snps.SNPs static method)


      	get_reference_sequences() (snps.resources.Resources method)


      	gzip_file() (in module snps.utils)


  





H


  	
      	heterozygous() (snps.snps.SNPs method)


  

  	
      	heterozygous_MT (snps.snps.SNPs property)


      	homozygous() (snps.snps.SNPs method)


  





I


  	
      	ID (snps.resources.ReferenceSequence property)


      	identify_low_quality_snps() (snps.snps.SNPs method)


  

  	
      	is_gzip() (snps.io.reader.Reader static method)


      	is_zip() (snps.io.reader.Reader static method)


  





L


  	
      	length (snps.resources.ReferenceSequence property)


  

  	
      	load_opensnp_datadump_file() (snps.resources.Resources method)


      	low_quality (snps.snps.SNPs property)


  





M


  	
      	md5 (snps.resources.ReferenceSequence property)


      	merge() (snps.snps.SNPs method)


      	
    module

      
        	snps.ensembl


        	snps.io


        	snps.io.reader


        	snps.io.writer


        	snps.resources


        	snps.snps


        	snps.utils


      


  





N


  	
      	notnull() (snps.snps.SNPs method)


  





P


  	
      	Parallelizer (class in snps.utils)


      	path (snps.resources.ReferenceSequence property)


  

  	
      	perform_rest_action() (snps.ensembl.EnsemblRestClient method)


      	phased (snps.snps.SNPs property)


      	predict_ancestry() (snps.snps.SNPs method)


  





R


  	
      	read() (snps.io.reader.Reader method)


      	read_23andme() (snps.io.reader.Reader method)


      	read_ancestry() (snps.io.reader.Reader method)


      	read_circledna() (snps.io.reader.Reader method)


      	read_dnaland() (snps.io.reader.Reader method)


      	read_ftdna() (snps.io.reader.Reader method)


      	read_ftdna_famfinder() (snps.io.reader.Reader method)


      	read_generic() (snps.io.reader.Reader method)


      	read_genes_for_good() (snps.io.reader.Reader method)


      	read_gsa() (snps.io.reader.Reader method)


  

  	
      	read_helper() (snps.io.reader.Reader method)


      	read_livingdna() (snps.io.reader.Reader method)


      	read_mapmygenome() (snps.io.reader.Reader method)


      	read_myheritage() (snps.io.reader.Reader method)


      	read_snps_csv() (snps.io.reader.Reader method)


      	read_tellmegen() (snps.io.reader.Reader method)


      	read_vcf() (snps.io.reader.Reader method)


      	Reader (class in snps.io.reader)


      	ReferenceSequence (class in snps.resources)


      	remap() (snps.snps.SNPs method)


      	Resources (class in snps.resources)


  





S


  	
      	save_df_as_csv() (in module snps.utils)


      	sequence (snps.resources.ReferenceSequence property)


      	sex (snps.snps.SNPs property)


      	Singleton (class in snps.utils)


      	SNPs (class in snps.snps)


      	snps (snps.snps.SNPs property)


      	
    snps.ensembl

      
        	module


      


      	
    snps.io

      
        	module


      


      	
    snps.io.reader

      
        	module


      


      	
    snps.io.writer

      
        	module


      


  

  	
      	
    snps.resources

      
        	module


      


      	
    snps.snps

      
        	module


      


      	
    snps.utils

      
        	module


      


      	snps_qc (snps.snps.SNPs property)


      	sort() (snps.snps.SNPs method)


      	source (snps.snps.SNPs property)


      	species (snps.resources.ReferenceSequence property)


      	start (snps.resources.ReferenceSequence property)


      	summary (snps.snps.SNPs property)


  





T


  	
      	taxonomy (snps.resources.ReferenceSequence property)


      	to_csv() (snps.snps.SNPs method)


  

  	
      	to_tsv() (snps.snps.SNPs method)


      	to_vcf() (snps.snps.SNPs method)


  





U


  	
      	unannotated_vcf (snps.snps.SNPs property)


  

  	
      	url (snps.resources.ReferenceSequence property)


  





V


  	
      	valid (snps.snps.SNPs property)


  





W


  	
      	write() (snps.io.writer.Writer method)


  

  	
      	Writer (class in snps.io.writer)


  





Z


  	
      	zip_file() (in module snps.utils)


  







            

          

      

      

    

  _images/snps_banner.png
GATCACAGGTCTATCAC
GGGGTATGCACGCGATA
TGA
ATTATTTATCGCACCTA
AATTAATTAATGCTTGT
TeC
TAACAAAAAATTTCCAC
CACAGCACTTAAACACA

CCTATTAACCACTCAC
GCATTGCGAGACGCTG
TTC cT6
6T TCA
ACG ACA
ACA CAG
@Y AcC
TCT 6

GGGAGCTCTCCATGCAT
GAGCCGGAGCACCCTAT
ccr AT
ATATTACAGGCGAACAT
TAATAATAACAATTGAA
ACA
ccc
ccA

TTGGTATTTTCGTCTGG
GTCGCAGTATCTGTCTT
ccr
ACTTACTAAAGTGTGTT
TGTCTGCACAGCCACTT
TCA
CCTCCCCCECTTCTGEC
AACCCCARAAACAAAGA





nav.xhtml

    
      Table of Contents


      
        		
          snps
        


        		
          README
          
            		
              Features
              
                		
                  Input / Output
                


                		
                  Build / Assembly Detection and Remapping
                


                		
                  Data Cleaning
                


                		
                  Analysis
                


              


            


            		
              Supported Genotype Files
            


            		
              Dependencies
            


            		
              Installation
            


            		
              Examples
              
                		
                  Download Example Data
                


                		
                  Load Raw Data
                


                		
                  Merge Raw Data Files
                


                		
                  Remap SNPs
                


                		
                  Save SNPs
                


              


            


            		
              Documentation
            


            		
              Acknowledgements
            


          


        


        		
          Output Files
          
            		
              Save SNPs
              
                		
                  SNPs.save
                


              


            


          


        


        		
          Installation
          
            		
              Installation and Usage on a Raspberry Pi
            


          


        


        		
          snps Banner
          
            		
              SNPs
              
                		
                  References
                


              


            


          


        


        		
          Changelog
        


        		
          Contributing
          
            		
              Bug reports
            


            		
              Documentation improvements
            


            		
              Feature requests and feedback
            


            		
              Development
              
                		
                  Pull request guidelines
                


              


            


            		
              Documentation
            


          


        


        		
          Contributors
          
            		
              Core Developers
            


            		
              Other Contributors
            


          


        


        		
          Code Documentation
          
            		
              SNPs
            


            		
              snps.ensembl
            


            		
              snps.io
              
                		
                  snps.io.reader
                


                		
                  snps.io.writer
                


              


            


            		
              snps.resources
            


            		
              snps.utils
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





